Exercícios resolvidos de permutações com repetições *
Exercícios:
1) A palavra MADEIRA possui sete letras, sendo duas letras A e cinco letras distintas: M, D, E, I, R. Quantos anagramas podemos formar com essa palavra?
Solução:
O número de permutações de uma palavra com sete letras distintas (MADEIRA)
é igual a 7! = 5040. Neste exemplo formaremos uma quantidade menor de
anagramas, pois são iguais aqueles em que uma letra A aparece na 2ª casa e a outra
letra A na 5ª casa (e vice-versa).
Para saber de quantas maneiras podemos arrumar as duas letras A, precisamos
de 2 posições. Para a primeira letra A teremos 7 posições disponíveis e para
A divisão por 2 é necessária para não contarmos duas vezes posições que formam o mesmo anagrama (como, por exemplo, escolher a 2ª e 5ª posições e a 5ª e 2ª posições).
Agora vamos imaginar que as letras A já foram arrumadas e ocupam a 1ª e 2ª posições:
A A _ _ _ _ _
Nas 5 posições restantes devemos permutar as outras 5 letras distintas, ou seja, temos 5! = 120 possibilidades. Como as 2 letras A podem variar de 21 maneiras suas posições, temos como resposta:
2) Quantos anagramas podemos formar com a palavra PRÓPRIO?
Solução:
Observe que aqui temos 7 letras a serem permutadas, sendo que as letras P, R e O aparecem 2 vezes cada uma e a letra I, apenas uma vez.
Como no caso anterior, teremos 2! repetições para cada arrumação possível
da letra P (o mesmo ocorrendo com as letras R e O). O número de permutações
sem repetição será, então:
Em breve mais exercícios.Ir para Análise combinatória Referências:Biblioteca Virtual do Estudante Brasileiro - TC2000 - Matemática - vol 3, 2º grau aula 52. TIZZIOTTI,
QUANTOS ANAGRAMAS PODEMOS FORMAR A PARTIR DAS LETRAS DA PALAVRA CURIÓ?
Como já vimos, a permutação simples de n elementos distintos é dada por Pn, então como na palavra CURIÓtemos 5 letras distintas, o número de anagramas seria igual a P5, ou seja, será igual a 5! que é igual a 120.
QUANTOS ANAGRAMAS PODEMOS FORMAR A PARTIR DAS LETRAS DA PALAVRA ARARA?
Note que embora esta palavra também tenha cinco letras, agora temos apenas duas letras distintas. A letra A que ocorre 3 vezes e a letra R que ocorre 2 vezes. Como devemos proceder nesta situação?
Vimos no caso da palavra CURIÓ, que a permutação de cinco letras distintas resulta em 120 possibilidades.
Como na palavra ARARA a letra A ocorre três vezes, a permutação destas três letras A é P3 = 3! = 6, ou seja, se dividirmos 120 por 6 iremos obter 20 que é o número de permutações, já desconsiderando-se as permutações entre as três letras A.
O mesmo iremos fazer em relação à letra R, só que neste caso o número de permutações desta letra éP2 = 2! = 2, isto é, dividindo-se 20 por 2 temos como resultado 10, que é o número total de permutações das letras da palavra ARARA, sem considerarmos as permutações das letras A entre si, e das letras R também entre elas mesmas.
PERMUTAÇÃO COM ELEMENTOS REPETIDOS
A cada um dos agrupamentos que podemos formar com certo número de elementos, onde ao menos um deles ocorre mais de uma vez, tal que a diferença entre um agrupamento e outro se dê pela mudança de posição entre seus elementos, damos o nome de permutação com elementos repetidos.
FÓRMULA DA PERMUTAÇÃO COM ELEMENTOS REPETIDOS
Se em um dado conjunto um elemento é repetido a vezes, outro elemento é repetido b vezes e assim sucessivamente, o número total de permutações que podemos obter é dada por:
A resolução do exemplo com o uso da fórmula é:
EXEMPLOS
Como a palavra PARAR possui 5 letras, mas duas delas são repetidas duas vezes cada, na solução do exemplo vamos calcular P5(2, 2):
Portanto:
Neste caso de permutação com elementos repetidos temos um total de 10 bolas de quatro cores diferentes. Segundo a repetição das cores, devemos calcular P10(4, 3, 2):
Então:
Neste exemplo, número ímpares serão aqueles terminados em 3 ou 9.
No caso dos números terminados em 3 devemos calcular P5(2, 2), pois um dos dígitos três será utilizado na última posição e dos 5 dígitos restantes, teremos 2 ocorrências do próprio algarismo 3 e 2 ocorrências do 6:
Agora no caso dos números terminados em 9 devemos calcular P5(3, 2), pois o dígito 9 será utilizado na última posição e dos 5 dígitos que sobram, teremos 3 ocorrências do 3 e 2 ocorrências do dígito 6:
Como temos 30 números terminados em 3 e mais 10 terminados em 9, então no total temos 40 números ímpares.
Logo:
http://www.matematicadidatica.com.br/PermutacaoElementosRepetidos.aspx
Nenhum comentário:
Postar um comentário