Por Thyago Ribeiro |
O gráfico de uma função afim é uma reta não perpendicular ao eixo Ox.
Domínio: D = R
Imagem: Im = R
São casos particulares de função afim as funções lineares e constante.
Função linear
Uma função definida por f: R→R chama-se linear quando existe uma constante a ∈ R tal que f(x) = ax para todo x ∈ R. A lei que define uma função linear é a seguinte:
O gráfico da função linear é uma reta, não perpendicular ao eixo Ox e que cruza a origem do plano cartesiano.
Domínio: D = R
Imagem: Im = R
Função constante
Uma função definida por f: R→R chama-se constante quando existe uma constante b R tal que f(x) = b para todo x ∈ R. A lei que define uma função constante é:
O gráfico de uma função constante, é uma reta paralela ou coincidente ao eixo Ox q que cruza o eixo Oy no ponto de ordenada b.
Coeficientes numéricos
Cada coeficiente numérico de uma função caracteriza um elemento do gráfico dessa função.
• Coeficiente a: coeficiente angular de uma reta. A é igual à tangente do ângulo que a reta faz com o eixo x.
Quando a > 0, a função é crescente.
Quando a < 0, a função é decrescente.
• Coeficiente b: é a ordenada do ponto em que o gráfico de f cruza o eixo das ordenadas, ou seja, b = f(0).
- Questão 1(U. F. Viçosa-MG)
Uma função f é dada por f(x) = ax + b, em que a e b são números reais. Se f(–1) = 3 e f(1) = –1, determine o valor de f(3).Questão 1f(x) = ax + b
f(–1) = 3
f(–1) = a * (–1) + b
3 = – a + b
f(1) = –1
f(1) = a * 1 + b
–1 = a + b
Sistema de equações
Isolando b na 1ª equação
–a + b = 3
b = 3 + a
Substituindo o valor de b na 2ª equação
a + b = –1
a + 3 + a = –1
2a = –1 – 3
2a = –4
a = – 2
Substituindo o valor de a na 1ª equação
b = 3 + a
b = 3 – 2
b = 1
A função será dada pela expressão f(x) = – 2x + 1. O valor f(3) será igual a:
f(3) = –2 * 3 + 1
f(3) = – 6 + 1
f(3) = – 5
O valor de f(3) na função f(x) = – 2x + 1 é igual a –5. - Questão 2Determine a função afim f(x) = ax + b, sabendo que f(1) = 5 e f(–3) = –7.Questão 2f(1) = 5
f(1) = a * 1 + b
5 = a + b
a + b = 5
f(–3) = –7
f(–3) = a * (–3) + b
f(–3) = –3a + b
–3a + b = –7
Sistema de equações
Isolando a na 1º equação
a + b = 5
a = 5 – b
Substituindo o valor de a na 2º equação
–3a + b = –7
–3 * (5 – b) + b = –7
–15 + 3b + b = –7
4b = –7 + 15
4b = 8
b = 2
Substituindo o valor de b na 1º equação
a = 5 – b
a = 5 – 2
a = 3
A função será definida pela seguinte lei de formação: f(x) = 3x + 2.
- Questão 3(U. Católica de Salvador-BA)
Seja a função f de R em R definida por f(x) = 54x + 45, determine o valor de f(2 541) – f(2 540).Questão 3f(2 541) = 54 * 2 541 + 45
f(2 541) = 137 214 + 45
f(2 541) = 137 259
f(2 540) = 54 * 2 540 + 45
f(2 540) = 137 160 + 45
f(2 540) = 137 205
f(2 541) – f(2 540) → 137 259 – 137 205 → 54
A diferença será igual a 54. - Questão 4(PUC-BH)
A função linear R(t) = at + b expressa o rendimento R, em milhares de reais, de certa aplicação. O tempo t é contado em meses, R(1) = –1 e R(2) = 1. Nessas condições, determine o rendimento obtido nessa aplicação, em quatro meses.Questão 4R(1) = –1
R(1) = a * 1 + b
–1 = a + b
a + b = –1
R(2) = 1
R(2) = a * 2 + b
1 = 2a + b
2a + b = 1
Sistema de equações
Isolando b na 1ª equação
a + b = –1
b = –1 – a
Substituindo o valor de b na 2ª equação
2a + b = 1
2a + (–1 – a) = 1
2a – 1 – a = 1
a = 1 + 1
a = 2
Substituindo o valor de a na 1ª equação
b = – 1 – a
b = –1 – 2
b = –3
A função será dada pela seguinte lei de formação: R(t) = 2t – 3.
Fazendo f(4), temos:
R(t) = 2 * 4 – 3
R(t) = 8 – 3
R(t) = 5
O rendimento obtido nessa aplicação será de R$ 5 000,00.
-
Outros exercícios:
Nenhum comentário:
Postar um comentário